Diastereoselective Nitrenium Ion-Mediated Cyclofunctionalization: Total Synthesis of (+)-Castanospermine

LETTERS 2010 Vol. 12, No. 22 5330–5333

ORGANIC

Edward G. Bowen and Duncan J. Wardrop*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States

wardropd@uic.edu

Received October 1, 2010

ABSTRACT

The asymmetric total synthesis of the α -glucosidase inhibitor (+)-castanospermine is reported. The central theme in our approach to this polyhydroxylated alkaloid is the simultaneous generation of the piperidine ring and the C-1/8a *erythro* stereodiad through the diastereoselective, oxamidation of an unsaturated *O*-alkyl hydroxamate. This process is believed to proceed sequentially via singlet acylnitrenium and aziridinium ion intermediates.

(+)-Castanospermine (1), a polyhydroxylated indolizidine alkaloid originally isolated from the seeds of the Moreton Bay chestnut tree (*Castanospermum australe*),¹ displays a prestigious range of biological activities which stem from its role as a glycosidase inhibitor (Scheme 1).² Compound **1**'s ability to inhibit endoplasmic reticulum (ER) glucosidase I is of particular significance since this leads to the abrogation of normal glycoprotein trafficking,³ a process critical to a host of cellular functions as well as the coat protein biogenesis of enveloped viruses.⁴ From a drug-development standpoint, compound **1** has elicited considerable interest

Scheme 1. Retrosynthetic Analysis of Castanospermine (1)

since it displays activity against several human viral pathogens, including HCV, parainfluenza, dengue virus, HSV-2, and HIV-1.⁵ Most recently, castanospermine has also been found to inhibit the Rho/Ras-glycosylating action of *Clostridium difficile* toxin B,⁶ which is the major virulence factor of this Gram-positive bacteria and the causative agent of

^{(1) (}a) Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce, R. J.; Arnold, E.; Clardy, J. *Phytochemistry* **1981**, *4*, 811. (b) Nash, R. J.; Fellows, L. E.; Dring, J. V.; Stirton, C. H.; Carter, D.; Hegarty, M. P.; Bell, E. A. *Phytochemistry* **1988**, *5*, 1403.

^{(2) (}a) Saul, R.; Chambers, J. P.; Molyneux, R. J.; Elbein, A. D. Arch. Biochem. Biophys. **1983**, 221, 593 (β -glucosidase, β -glucocerebrosidase, β -xylosidase). (b) Trugnan, G.; Rousset, M.; Zweibaum, A. FEBS Lett. **1986**, 195, 28 (sucrase). (c) Campbell, B. C.; Molyneux, R. J.; Jones, K. C. J. Chem. Ecol. **1987**, 13, 1759 (disaccharidases). (h) Scofield, A. M.; Rossiter, J. T.; Witham, P.; Kite, G. C.; Nash, R. J.; Fellows, L. E. Phytochemistry **1990**, 29, 107 (thioglucosidase). (i) Valaitis, A. P.; Bowers, D. F. Insect Biochem. Mol. Biol. **1993**, 23, 599 (trehalase).

antibiotic-associated pseudomembranous colitis, a leading cause of infectious diarrhea in hospitals worldwide.⁷

Given the biological activity of castanospermine, it is understandable that almost 30 years after its initial isolation this alkaloid remains a relevant and popular synthetic target.^{8,9} That minor structural/stereochemical alterations to 1 lead to dramatic alterations in glycosidase selectivity only adds further impetus to the development of new synthetic routes to this natural product.¹⁰ In light our of our ongoing interest in the synthesis of α -glucosidase inhibitors^{11,12} and having recently reported a versatile oxamidation method for the preparation of α -hydroxyalkyl lactams involving the intramolecular addition of acylnitrenium ions to alkenes,¹³ we were prompted to consider whether this methodology might be gainfully employed in the enantioselective preparation of (+)-castanospermine. Herein, we report the successful implementation of this idea through the use of a substratecontrolled nitrenium ion oxamidation reaction.

From a reterosynthetic perspective, we envisioned that the indolizidine ring of 1 could be generated from α -hydroxy-alkyl lactam 2 through a sequence of reduction and ring

(5) (a) Durantel, D. Curr. Opin. Invest. Drugs 2009, 10, 860 (HCV).
(b) Tanaka, Y.; Kato, J.; Kohara, M.; Galinski, M. Antiviral Res. 2006, 72, 1 (parainfluenza). (c) Whitby, K.; Pierson, T.; Geiss, B.; Lane, K.; Engle, M.; Zhou, Y.; Doms, R.; Diamond, M. J. Virol. 2005, 79, 8698 (dengue virus). (d) Whitby, K.; Taylor, D.; Patel, D.; Ahmed, P.; Tyms, A. Antiviral Chem. Chemother. 2004, 15, 141 (bovine viral diarrhea virus/HCV). (e) Ahmed, S. P.; Nash, R.; Bridges, C.; Taylor, D.; Kang, M.; Porter, E.; Tyms, A. Biochem. Biophys. Res. Commun. 1995, 208, 267 (HSV-2). (f) Bridges, C.; Brennan, T.; Taylor, D.; McPherson, M.; Tyms, A. Antiviral Res. 1994, 25, 169 (HIV-1).

(6) Jank, T.; Ziegler, M. O.; Schulz, G. E.; Aktories, K. FEBS Lett. 2008, 582, 2277.

(7) Lyras, D.; O'Connor, J.; Howarth, P.; Sambol, S.; Carter, G.; Phumoonna, T.; Poon, R.; Adams, V.; Vedantam, G.; Johnson, S.; Gerding, D.; Rood, J. *Nature* **2009**, *458*, 1176.

(8) For recent syntheses of castanospermine, see: (a) Liu, G.; Wu, T. J.;
Ruan, Y. P.; Huang, P. Q. *Chem.-Eur. J.* 2010, *16*, 5755. (b) Jensen, T.;
Mikkelsen, M.; Lauritsen, A.; Andresen, T. L.; Gotfredsen, C. H.; Madsen,
R. J. Org. Chem. 2009, 74, 8886. (c) Ceccon, J.; Danoun, G.; Greene, A. E.;
Poisson, J. F. Org. Biomol. Chem. 2009, 7, 2029. (d) Machan, T.; Davis,
A. S.; Liawruangrath, B.; Pyne, S. G. Tetrahedron 2008, 64, 2725. (e)
Karanjule, N. S.; Markad, S. D.; Shinde, V. S.; Dhavale, D. D. J. Org.
Chem. 2006, 71, 4667. (f) Zhao, Z. M.; Song, L.; Mariano, P. S. Tetrahedron
2005, 61, 8888. (g) Cronin, L.; Murphy, P. V. Org. Lett. 2005, 7, 2691.

(9) For a review of recent total syntheses of castanospermine and related α -glucosidase inhibitors, see: (a) Wardrop, D. J.; Waidyarachchi, S. L. *Nat. Prod. Rep.* **2010**, *27*, 1413. For a review of earlier syntheses of castanospermine, see: (b) López, M. D.; Cobo, J.; Nogueras, M. *Curr. Org. Chem.* **2008**, *12*, 718.

(10) For bioactive analogues of castanospermine, see: (a) Louvel, J.;
Botuha, C.; Chemla, F.; Demont, E.; Ferreira, F.; Pérez-Luna, A. *Eur. J. Org. Chem.* **2010**, 2921. (b) Pluvinage, B.; Ghinet, M. G.; Brzezinski, R.;
Boraston, A. B.; Stubbs, K. A. *Org. Biomol. Chem.* **2009**, *7*, 4169. (c)
Aguilar-Moncayo, M.; Mellet, C. O.; Fernández, J. M. G.; Garcia-Moreno,
M. I. *J. Org. Chem.* **2009**, *74*, 3595. (d) Aguilar-Moncayo, M.; Gloster,
T. M.; Turkenburg, J. P.; Garcia-Moreno, M. I.; Mellet, C. O.; Davies,
G. J.; Fernández, J. M. G. *Org. Biomol. Chem.* **2009**, *7*, 2738. (e) Benltifa,
M.; Garcia Moreno, M. I.; Ortiz Mellet, C.; Garcia Fernández, J. M.;
Wadouachi, A. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2805.

(11) Bowen, E. G.; Wardrop, D. J. J. Am. Chem. Soc. **2009**, 131, 6062. (12) See ref 9a.

(13) Wardrop, D. J.; Bowen, E. G.; Forslund, R. E.; Sussman, A. D.; Weerasekera, S. L. J. Am. Chem. Soc. 2010, 132, 1188.

closure (Scheme 1). In turn, this compound would be accessed through the cyclization of the nitrenium ion generated upon the oxidation of methyl D-gluco-hydroxamate **6**. Since singlet nitrenium ions are known to undergo concerted addition to alkenes,¹⁴ this reaction would generate bicyclic aziridinium ion **3**, which upon concerted, regiose-lective ion-pair collapse at the external (α) position¹⁵ and hydrolysis of the resulting triflouroacetate ester adduct would provide δ -lactam **2** and thereby establish the C-1/8a *erythro* stereodiad of the natural product. Regarding the diastereo-selectivity of the addition process, we anticipated that cyclization of the nitrenium ion generated from **6** would preferentially proceed via a transition state resembling pseudochair **4**, thereby avoiding the 1,3-allylic strain¹⁶

Our initial route toward (+)-castanospermine (1) commenced from tribenzyl D-glucono- δ -lactone (7),¹⁸ which underwent ring opening with the methoxylamine in the presence of Me₃Al¹⁹ to provide *O*-methyl hydroxamate **8** in excellent yield (Scheme 2). Chemoselective oxidation of the

primary alcohol, using TEMPO and trichloroisocyanuric acid (TCICA),²⁰ now generated unstable aldehyde **9**.²¹ Exposure of this substrate to the ylide generated from 3-(*tert*-butyldimethylsilyloxy)propyl phosphonium bromide and KH-

(14) (a) Rudchenko, V. F.; Ignatov, S. M.; Kostyanovsky, R. G. Chem.
 Commun. 1990, 261. (b) Vedejs, E.; Sano, H. Tetrahedron Lett. 1992, 33, 3261. (c) Hoffman, R. V.; Christophe, N. B. J. Org. Chem. 1988, 53, 4769.

(15) For regioselective ring opening of a 1-azabicyclo[4.1.0]heptane-based aziridinium ion, see: (a) D'hooghe, M. D.; Vanlangendonck, T.; Tšrnroos, K. W.; De Kimpe, N. J. Org. Chem. **2006**, *71*, 4678. (b) Ref 13.

(16) Hoffmann, R. W. *Chem. Rev.* **1989**, *89*, 1841.

(17) For a related conformational analysis made in reference to an

intramolecular Huisgen alkene-azide cycloaddition, see: Zhou, Y.; Murphy, P. V. *Org. Lett.* **2008**, *10*, 3777.

(18) López, R.; Fernández-Mayorala, A. J. Org. Chem. 1994, 59, 737.
(19) (a) Takahashi, H.; Hitomi, Y.; Iwai, Y.; Ikegami, S. J. Am. Chem. Soc. 2000, 122, 2995. (b) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 18, 4171.

^{(3) (}a) Gloster, T.; Meloncelli, P.; Stick, R.; Zechel, D.; Vasella, A.; Davies, G. J. Am. Chem. Soc. **2007**, *129*, 2345. (b) Pan, Y. T.; Hori, H.; Saul, R.; Sanford, B. A.; Molyneux, R. J.; Elbein, A. D. Biochemistry **1983**, 22, 3975. (c) Sasak, V. W.; Ordovas, J. M.; Elbein, A. D.; Berninger, R. W. Biochem. J. **1985**, 232, 759. (d) Ellmers, B. R.; Rhinehart, B. L.; Robinson, K. M. Biochem. Pharmacol. **1987**, *36*, 2381. (e) Foddy, L.; Hughes, R. C. Eur. J. Pharmacol. **1988**, *175*, 291.

^{(4) (}a) Gloster, T. M.; Davies, G. J. Org. Biomol. Chem. **2010**, *8*, 305. (b) Winchester, B. G. Tetrahedron: Asymmetry **2009**, 20, 645.

 MDS^{22} provided **10** in poor yield. Inefficiencies of preparation notwithstanding, we proceeded to investigate the key cyclization step using this substrate.

Upon exposure to phenyliodine bis(triflouroacetate) (PIFA) and trifluoroacetic acid in CH₂Cl₂, hydroxamate **10** underwent slow cyclization to form a mixture of products which following in situ ammonolysis of the trifluoroacetate adducts were separated by flash chromatography to provide compounds **11** and **13** and their desilyated counterparts **12** and **14**. The unanticipated formation of 1,4-oxazepan-3-ones **13** and **14** presumably arises from competitive interception of the nitrenium ion intermediate by the C-3 benzyl ether in **10**.²³ More encouragingly, oxamidation products **11** and **12** were isolated as single diastereomers, which NOSEY experiments indicated were of the desired stereochemistry at C-6.

In light of the involvement of the C-3 O-protecting group during cyclization and the inefficiency of the preceding Wittig reaction, a number of alterations to our synthetic plan were clearly mandated. Accordingly, we decided to evaluate alternative protecting groups that would not irreversibly trap the putative *N*-acylnitrenium ion. To impede loss of the TBS silyl ether under the acidic reaction conditions, a TIPS protecting group was chosen as a more robust surrogate.

Our plan thus amended, the second-generation, and ultimately successful, route to (+)-castanospermine commenced from α -D-xylopyranoside **15**,²⁴ which through reductive etherification of the corresponding (bis)trimethyl-silyl ether using benzaldehyde²⁵ was converted to dibenzyl ether **16** (Scheme 3). While direct deallylation of **16** proved to be unexpectedly challenging and failed with a number of reagents, a stepwise approach to this task ultimately proved successful. Thus, exposure of **16** to catalytic HRh(PPh₃)₃ in THF provided the corresponding enol ether which without isolation was hydrolyzed with HgCl₂–HgO to afford a mixture of lactol anomers in good overall yield.²⁶ Conversion of these products to lactone **17** while sluggish with PDC or PCC proceeded with high efficiency under the Albright–Goldman conditions (DMSO, Ac₂O).²⁷

In preparation for installation of the pendant alkene, methanolysis of **17** in the presence of camphorsulfonic acid provided the corresponding δ -hydroxy ester in high yield. Addition of a phosphate buffer (pH 7) prior to workup, to prevent transesterification to **17**, was found to be a prerequisite for the success of this reaction. Oxidation of the primary alcohol, again using TEMPO and TCICA, and Scheme 3. Second-Generation Route to (+)-Castanospermine (1)

treatment of the aldehyde with the ylide generated from (3isopropylsiloxy)propyltriphenylphosphonium bromide²⁸ then provided **18** in high overall yield. Chemoselective saponification of the methyl ester was now accomplished by the treatment of **18** with aqueous KOH (0.1 M, 3 equiv) in THF and MeOH. Formation of oxamidation substrate **19** was then accomplished by conversion of **18** to the corresponding mixed anhydride, which was treated with methoxylamine hydrochloride.

Disappointingly, exposure of compound **19** to PIFA in the presence of trifluoroacetic acid at room temperature failed to effect cyclization and instead generated an intractable mixture of products.²⁹ Fortunately, performing this reaction at higher temperature, accomplished by adding **19** to a solution of PIFA and trifluoroacetic acid in CHCl₃ at reflux, rapidly afforded **20**, which was isolated as a single diastereoisomer after in situ ammonolysis of the trifluoroacetate adduct. That **19** does not undergo cyclization at ambient temperature, in contrast to compound **10**, may reflect a decrease in the stability of the intermediate nitrenium ion, which in this case could be destabilized by the presence of a more electron-withdrawing, α -acyloxy substituent. This interpretation is consistent with our current belief that

⁽²⁰⁾ De Luca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041.

⁽²¹⁾ Upon standing for 12 h at room temperature, compound **9** underwent cyclization to form a mixture of cyclic carbinolamine diastereomers.

⁽²²⁾ Glebocka, A.; Sicinski, R.; Plum, L.; Clagett-Dame, M.; Deluca, H. J. Med. Chem. 2006, 49, 2909.

⁽²³⁾ Kikugawa, Y.; Shimado, M.; Matsumoto, K. *Heterocycles* 1994, 37, 293.

⁽²⁴⁾ Prepared in two steps, from D-xylose: Rosenberg, H.; Riley, A.; Marwood, R.; Correa, V.; Taylor, C.; Potter, B. *Carbohydr. Res.* **2001**, *332*, 53.

⁽²⁵⁾ Hatakeyama, S.; Mori, H.; Kitano, K.; Yamada, H.; Nishizawa, M. *Tetrahedron Lett.* **1994**, *35*, 4367.

^{(26) (}a) Boons, G.; Burton, A.; Isles, S. *Chem. Commun.* 1996, 141.
(b) Uma, R.; Davies, M.; Crévisy, C.; Grée, R. *Eur. J. Org. Chem.* 2001, 3141. (c) Corey, E. J.; Suggs, J. W. *J. Org. Chem.* 1973, *38*, 3224.

⁽²⁷⁾ Albright, J. D.; Goldman, L. J. Am. Chem. Soc. **1965**, 87, 4214.

⁽²⁸⁾ For details of preparation, see Supporting Information and: Clayden, J.; Knowles, F. E.; Baldwin, I. R. J. Am. Chem. Soc. 2005, 127, 2412.

⁽²⁹⁾ Oxidation of *O*-alkyl hydroxamates can also lead to the formation of thermally unstable *N*,*N*'-dialkoxy-*N*,*N*'-diacylhydrazines: (a) De Almeida, M. V.; Barton, D. H. R.; Bytheway, I.; Ferreira, J. A.; Hall, M. B.; Liu, W.; Taylor, D. K.; Thomson, L. *J. Am. Chem. Soc.* **1995**, *117*, 4870. (b) Cooley, J. H.; Mosher, M. W.; Khan, M. A. *J. Am. Chem. Soc.* **1968**, *90*, 1867. (c) Crawford, R. J.; Raap, R. *J. Org. Chem.* **1963**, *28*, 2419.

formation of this N-electrophile is rate limiting and may occur from an *N*-methoxy-*N*-trifluoroacetoxy, or anomeric, amide.³⁰

As with piperidinones **11** and **12**, a 2D NOESY experiment conducted upon **21** revealed a correlation between H-4 and H-6, which together with the absence of interactions between H-3 and H-5 is diagnostic of a half-chair conformation³¹ and confirms the relative stereochemistry at C-6 (Scheme 3).

Treatment of compound **21** with $Mo(CO)_6$ in aqueous acetonitrile now cleaved the N-O bond and provided the corresponding NH-lactam, 32 which was reduced with borane to yield piperidine 22. Removal of the TIPS ether, using TBAF in THF, then provided the corresponding amino-2,4diol in excellent yield. Selective bromination of this primary alcohol and in situ cyclization to indolizidine 23 was now accomplished by recourse to Appel's conditions.³³ Reflecting the relatively hindered environment at the C-2 position, saponification of the pivalate ester now proceeded slowly at room temperature to provide the 6,7-di-O-benzyl ether of castanospermine, albeit in high yield. With the C-1a stereocenter now constrained within the indolizidine ring system, unambiguous assignment of stereochemistry was possible through a NOSEY experiment (Scheme 4). Finally, removal of the benzyl ethers, via hydrogenolysis in the presence of PdCl₂, provided (+)-castanospermine (1). The ¹H and ¹³C NMR spectral data obtained from this material were identical to those reported for the natural product. In addition, the optical rotation of synthetic 1 ($[\alpha]_{24}^{D}$ -86.0; c 0.1, MeOH) closely matched that of the natural product ($[\alpha]_{25}^{D}$ -87.2; c 2.1, MeOH).³⁴

S. A.; Hammond, G. P. J. Org. Chem. 1998, 63, 9684.

(31) Boudreault, N.; Ball, Ř. G.; Bayly, C.; Bernstein, M. A.; Leblanc, Y. *Tetrahedron* **1994**, *50*, 7947.

(32) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo, F. *Tetrahedron Lett.* **1990**, *31*, 3351.

(33) Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.

(34) Scheider, M. J.; Ungemach, F. S.; Broquist, H. P.; Harris, T. M. *Tetrahedron* **1983**, *39*, 29.

In conclusion, we have developed a 15-step synthesis of (+)-castanospermine (1) in which the C-1/8a stereodiad is established through the diastereoselective oxamidation of an unsaturated *O*-alkyl hydroxamate. That this process was found to be stereospecific with respect to alkene geometry supports our current belief that the oxamidation proceeds via the concerted ring opening of a bicyclic aziridinium ion formed upon the addition of a singlet nitrenium ion to the pendant alkene. Extension of this valuable methodology to the preparation of other azasugars is now in progress.

Acknowledgment. We thank the National Institutes of Health (GM-67176) and the University of Illinois at Chicago for financial support of this work.

Supporting Information Available: Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL102371X

^{(30) (}a) Glover, S. A. Adv. Phys. Org. Chem. 2008, 42, 35. (b) Glover, S. A.; Rauk, A. J. Chem. Soc., Perkin Trans. 2 2002, 1740. (c) Glover,